

 Editor: T. Grandon Gill

Volume 3 Number 10 31 DEC 2018

ONOCHIE FAN-OSUALA

A NOTE ON WEB VULNERABILITIES1
In October 2014, JP Morgan Chase, one of the biggest investment banking firms in the united states
experienced a breach that caused the leak of the records of an estimated 76 million households and 7
million small businesses. The breach which is one of the largest in terms of number of records exposed
was possible through some flaws found in the web applications used by the bank (TrendMicro, 2014).
The attack, believed to have focused on servers housing sensitive information of customers who accessed
the sites chase.com and jpmorgan.com, was carried out through a zero-day vulnerability –exploiting one
of the security holes present in the bank’s web application. Similarly in January 2009, Heartland Payment
Systems, a payment processing company was a victim of data security breach that involved the exposure
of tens of millions of cardholders’ records (Vijayan, 2009). This breach was carried through an SQL
injection attack on the company’s website (SecureWorks, 2012). Consistent across these two examples
and so many other security breaches is the attacker’s point of entry: vulnerabilities in the web
applications. Furthermore, a Verizon report (Blevins, 2014) on data breaches notes that web applications
attack remains the most common security threat on the internet, with about 35% of all confirmed breaches
linked to web application vulnerabilities.
Web application security vulnerabilities are defects, cracks or weaknesses in a web application, often as a
result of design flaws or an implementation bugs, which allows an attacker to cause harm to the
stakeholders of the web application (application owner, application user, and other entities that may rely
on the application) [OWASP Vulnerability, n.d.] According to the open web application security project
(OWASP), web application vulnerabilities and weaknesses are a result of: lack of or inadequate validation
of inputs provided by users, insufficient logging mechanisms of activities on the web application, fail-
open error handling, and not closing database connections properly.

The frequency in which new web applications and features are rolled out and the lack of thorough testing
of these web apps compared to commercial software packages and operating systems, often makes it
increasingly difficult not to have defects or vulnerabilities introduced into such applications. Though most
people and organizations still do not have a security-first approach to their web applications (Kalman,
2014), organizations that do pay attention to web application security are not entirely security risk free.
The variety and mixture of techniques available to attackers make protecting web applications a complex
task (Geer, 2015). In order to keep abreast with web application security issues and challenges as well as
adhere to security best practices, organizations can rely on information and practices suggested by
dedicated communities like OWASP (Geer, 2015).

1 Copyright © 2018, Onochie Fan-Osuala. This technical note was developed to provide background information in
support of one or more case studies published by the Muma Case Review. This note is published under a Creative
Commons BY-NC license. It may be freely copied and shared for non-commercial purposes.

 FAN-OSUALA

2 Volume 3, Number 10, 2018

OWASP
The open web application security project (OWASP) is an international not-for-profit organization
devoted to web application security and related issues. It is a community dedicated to enabling
organizations conceive, develop, acquire, operate and maintain secure web applications (OWASP About,
n.d). The community educates developers, designers, architects and organizations on the issues of web
application security especially vulnerabilities through the provision of free articles on issues, guidelines,
checklists, methodologies, documentation, tools, and technologies related to web security. OWASP is not
affiliated to any technology company, however, membership is open and includes corporations,
educational organizations, and individuals from around the world. OWASP projects generally cover many
areas of application security and are categorized as follows:

• Flagship Projects: are projects in topics that have shown strategic value to the community and
application security in general. Examples include: OWASP Web Testing Environment Project,
OWASP Top Ten Project, OWASP CSRFGuard Project

• Lab Projects: are project that have produced an OWASP reviewed deliverable of value.
Examples include: OWASP Mantra Security Framework, OWASP Security Shepherd, OWASP
Top 10 privacy Risks Projects, OWASP proactive controls

• Incubator Projects: are projects in the experimental phase that are still being proven and
developed. Examples include: OWASP Broken Web Applications project, OWASP Joomla
Vulnerability Scanner Project.

One of the major projects of OWASP as previously highlighted is the Top 10 Project. The Top 10 project
started out as a list that identifies and describes the ten most common or prevalent web application
vulnerabilities. However since 2010, the list prioritizes these vulnerabilities by risk rather than by
prevalence.

Most Common Web Vulnerabilities
Over the years, the most common web vulnerabilities and the risk associated with them have evolved.
However, some vulnerabilities have remained consistent and have been continuously exploited by
attackers. The impacts of these attacks through these vulnerabilities and the ease in which attacks through
these vulnerabilities can be social engineered has made them worthwhile to attackers. Outlined are some
of the most consistent and risky web vulnerabilities:

Injection vulnerability
This type of vulnerability is easy to exploit and has remained consistently at the top of many web
vulnerability lists. It is, perhaps, the most risky of web application vulnerabilities. Organizations
consistently face the risk of breach through injections. Injection vulnerabilities such as SQL, OS and
LDAP injections happen when untrusted data is sent to an interpreter as part of a command or query
(OWASP, 2013) often causing the interpreter to execute unintended commands. In an injection attack, the
attacker’s uses malicious data (often text-based) that deceives the targeted interpreter (e.g. a server) into
executing unintended commands which can lead to severe consequences (e.g. accessing data without
proper authorization, complete host takeover, denial of access). These vulnerabilities are often found in
legacy code; queries - Xpath, SQL, LDAP, NoSQL; OS commands; XML parsers; SMTP headers; and
program arguments (OWASP, 2013). Injection vulnerabilities are often difficult to discover during
testing, but can be easy to discover by examining the code (OWASP, 2013).

 MUMA CASE REVIEW

 3

Prevention
Some procedures to reduce the presence of this vulnerability are:

1. Consistently check the code in an application to see if the applications uses the interpreters safely.
This can be done through code analysis tools.

2. Keep untrusted data separate from commands and queries (OWASP, 2013). This can be done by
using safe APIs that either avoid interpreters completely or provide some parameterized interface.
However, even with APIs, be careful with parametrized stored procedures.

3. Doing input validation or white listing input is also recommended. In this case, web forms are
designed to accept only legitimate inputs.

Broken authentication and session management (BASM)
This is another risky web vulnerability often resulting from poor design and implementation of
application functions related to authentication and session management (OWASP, 2013). This
vulnerability allows attackers to compromise passwords, keys, session tokens, exploit other flaws in the
application, or hijack user identities due to improper protection of credentials and session tokens during
connection lifecycle. BASM flaws are often introduced through ancillary authentication functions like
logout, timeout, remember me, account management, and password management. An example of this
vulnerability is when an application has user session IDs exposed in the URL with unencrypted
connections. This can be easily hijacked and used to impersonate a user. BASM vulnerability can be
difficult to detect with scanning tools, however, thorough code review and testing are quite effective in
detecting this flaw.

Prevention
To prevent this flaw:
Use secure connections, communications and credential storage. This is done by using SSL as the option
for authenticated parts of the application and storing credentials in hashed or encrypted forms.

1. Make concerted efforts to avoid cross-site scripting vulnerabilities in your web application design
as these can be used to steal or hijack session IDs.

2. Carefully plan authentication design and consider human factors. For instance, ensuring that a
logout destroys all server side session state and client side cookies without requiring human
confirmations as humans can easily close the window without logging out successfully.

Cross-site scripting (XSS)
XSS is by far the most common web application vulnerability. It occurs anytime an application takes
unverified data and sends it to a web browser without proper validation or escaping (OWASP, 2013).
XSS allows attackers to execute scripts in a victim’s web browser which can lead to hijacking of user
sessions, defacing of web sites, or redirection of victim to malicious sites. Typically, the attacker exploits
a vulnerability in a web application to deliver malicious scripts to a victim’s web browser. For instance, if
a vulnerable website or application requires user input in its pages, an attacker can insert malicious code
as part of the HTML elements for rendering the webpage and while parsing the HTML elements for the
page, the victim’s browser executes the malicious code. XSS attack is often employed within VBScript,
ActiveX, Shockwave and Flash, but JavaScript still remains the most abused due to JavaScript’s near
ubiquity in browsing experience (Acunetix, n.d). Figure 1 shows a high level view of a typical XSS
attack. The variants of XSS attacks are numerous and the likelihood that a site has XSS vulnerabilities is

 FAN-OSUALA

4 Volume 3, Number 10, 2018

very high. There are three main types of XSS: reflected XSS, stored or persistent XSS, and DOM
injection.

• Reflected XSS attacks are the most simple to exploit. It is an XSS attack where the injected script
is usually bounced off the web server or returned as part of the request, such as in an error
message or search result where the response from the server contains part of or all the input sent
to the server as part of a request. The attack is delivered to the victim through another trusted
route like email or trusted web server and is deceived into triggering the malicious script by either
clicking a link, submitting a specially designed web form, etc.

• Stored XSS takes malicious data, stores it (in a file, database, or back end system), and at some
time in the future, presents the data unfiltered to the user. This type of XSS is extremely bad for
content management systems (CMS), blogs, and forums where a multitude of users see inputs
from other individuals.

• DOM injection typically alters the site JavaScript codes and variables instead of the HTML
elements. Typically, DOM is focused on the client side execution of scripts since the JavaScript
codes which have been altered executes differently from how the web application owners
intended it to execute.

XSS Vulnerabilities can be detected through thorough testing and code analysis.

ATTACKER VULNERABLE
WEB APPLICATION

USER/VICTIMMALICIOUS DOMAIN

User sends request
to web application

Malicious script is returned
with user request

Attacker delivers malicious script
into a vulnerable web application

Attacker gains control of victim’s
system of data

Victim is redirected to
 another domain

Figure 1. A high level view of a typical cross-site scripting attack.

 MUMA CASE REVIEW

 5

Prevention
1. Properly escape all untrusted data depending on the HTML context (body, attribute, JavaScript,

CSS, or URL) that the data will be placed into (OWASP, 2013).
2. Doing input validation or white listing input is recommended. In this case, validation should

include verifying length, formats, characters, and rules before using them as input.
3. Consider Content Security Policy (CSP) to guard against XSS across attacks (OWASP CSP, n.d).

Insecure direct object reference
This vulnerability occurs when a developer leaves the reference to an internal implementation object (e.g.
file, directory, database key) exposed. The exposure allows attackers to easily alter these references in
order to access unauthorized data. For instance, an application that uses the actual name or key of an
object (e.g. database key) when generating a web page and does not verify if the user is authorized can
easily be manipulated into referencing another system object (often restricted resources) by altering a
parameter value that is used in referencing the predefined system object. The finest way to detect if this
vulnerability is present in an application is to check that all object references have appropriate guards.
Insecure direct object references flaws are easy to detect thorough code analysis which can show if
authorization is properly verified. Testing can also help in detecting these flaws.

Prevention
1. Using per user or per session indirect object references as this can stop attackers from directly

targeting unauthorized resources.
2. Checking access for each use of a direct object reference from an unknown source to guarantee

that the source is authorized for the requested object.

Other Popular Web Vulnerabilities
While the prior listed four vulnerabilities have consistently remained at the top of the list for being the
most risky vulnerabilities in the past 6 years, other prevalent vulnerabilities are:

Cross Site Request Forgery (CSRF)
CSRF is an attack that makes an authenticated user’s browser perform unwanted actions on a vulnerable
application to the benefit of the attacker (OWASP CSRF, n.d). A CSRF attack through some form of
social engineering (links in email or chat) can deceive a victim’s web application into submitting
malicious requests when the user is authenticated into a site and executing sinister actions of the attackers
choosing like funds transfer, changing of user passwords, or even compromising the server end web
application. CSRF can be prevented by including unpredictable unique token in each HTTP request.

Use of Components with known vulnerabilities
Using components like libraries, frameworks, and modules with known flaws in building a web
application can expose the application to attacks. This is because most of these components often run with
full privileges and attackers can sabotage a web application by exploiting these components. Prevention
include having a very well defined application design process and practices that pay attention to
components used in building the application in terms dependencies, issues and possible weaknesses.

 FAN-OSUALA

6 Volume 3, Number 10, 2018

Sensitive data exposure
A significant number of web applications do not protect sensitive data like credit card details, tax IDs, and
passwords. Such weakly protected data can be easily stolen or modified by attackers and used to their
benefit. Prevention is done by identifying what data is sensitive and providing extra protection through
encryption when the data is in transit or stored.

Similarly, the following vulnerabilities are worthy of mention from the large pool of web application
security vulnerabilities: security misconfiguration, missing function level access control, unvalidated
redirects and forwards, and information leakage and improper error Handling.

References
• Acunetix (n.d). Cross-site Scripting (XSS) Attack Retrieved from

https://www.acunetix.com/websitesecurity/cross-site-scripting/
• Blevins, B. (2014). Verizon data breach report: Web application attacks a growing concern.

Retrieved from http://searchsecurity.techtarget.com/news/2240219379/Verizon-data-breach-
report-Web-application-attacks-a-growing-concern

• Geer, D. (2015). “Why are there still so many website vulnerabilities?” retrieved on October 3,
2015 from http://www.csoonline.com/article/2936619/data-protection/why-are-there-still-so-
many-website-vulnerabilities.html

• Kalman, G. (2014). 10 Most Common Web Security Vulnerabilities. Retrieved from
http://www.toptal.com/security/10-most-common-web-security-vulnerabilities

• OWASP About (n.d). About The Open Web Application Security Project. Retrieved from
https://www.owasp.org/index.php/About_OWASP

• OWASP CSP (n.d) Content Security Policy. Retrieved on October 3rd, 2015 from
https://www.owasp.org/index.php/Content_Security_Policy

• OWASP CSRF (n.d). Cross-Site Request Forgery. Retrieved on October 4th, 2015 from
https://www.owasp.org/index.php/CSRF

• OWASP Vulnerability (n.d). Vulnerability Retrieved on October 4th, 2015 from
https://www.owasp.org/index.php/Category:Vulnerability

• OWASP. (2013). “OWASP Top 10 – 2013: The 10 most critical web application security risk”
retrieved on October 3, 2015 from
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project#tab=OWASP_Top_10_f
or_2013

• SecureWorks (2012). A Famous Data Security Breach & PCI Case Study: Four Years Later.
Retrieved from https://www.secureworks.com/blog/general-pci-compliance-data-security-case-
study-heartland

• TrendMicro (2014). JP Morgan Breach Affects Millions, Shows the Need for Secure Web Apps.
Retrieved from http://www.trendmicro.com/vinfo/us/security/news/cyber-attacks/jp-morgan-
breach-affects-millions-shows-need-for-secure-web-apps

• Vijayan, J. (2009). SQL Injection attacks led to Heartland, Hannaford Breaches. Retrieved from
http://www.computerworld.com/article/2527185/security0/sql-injection-attacks-led-to-heartland--
hannaford-breaches.html

Acknowledgements
Development of this note is based upon work supported by the National Science Foundation under Grant
No. 1418711.

https://www.acunetix.com/websitesecurity/cross-site-scripting/
https://www.owasp.org/index.php/About_OWASP
https://www.owasp.org/index.php/Content_Security_Policy
https://www.owasp.org/index.php/CSRF
https://www.owasp.org/index.php/Category:Vulnerability
https://www.secureworks.com/blog/general-pci-compliance-data-security-case-study-heartland
https://www.secureworks.com/blog/general-pci-compliance-data-security-case-study-heartland
http://www.trendmicro.com/vinfo/us/security/news/cyber-attacks/jp-morgan-breach-affects-millions-shows-need-for-secure-web-apps
http://www.trendmicro.com/vinfo/us/security/news/cyber-attacks/jp-morgan-breach-affects-millions-shows-need-for-secure-web-apps
http://www.computerworld.com/article/2527185/security0/sql-injection-attacks-led-to-heartland--hannaford-breaches.html
http://www.computerworld.com/article/2527185/security0/sql-injection-attacks-led-to-heartland--hannaford-breaches.html

 MUMA CASE REVIEW

 7

Biography

Onochie Fan-Osuala is a PhD Candidate in information systems (IS) at the Muma
College of Business, University of South Florida. He is interested in using
analytics and experimental designs to solve problems bothering on the IS-
operations, IS-marketing and IS-entrepreneurship interfaces. His work mostly
explore these problems in online platforms and marketplaces.

	OWASP
	Most Common Web Vulnerabilities
	Injection vulnerability
	Prevention

	Broken authentication and session management (BASM)
	Prevention

	Cross-site scripting (XSS)
	Prevention

	Insecure direct object reference
	Prevention

	Other Popular Web Vulnerabilities
	Cross Site Request Forgery (CSRF)
	Use of Components with known vulnerabilities
	Sensitive data exposure
	References

	Acknowledgements
	Biography

