

 Editor: Grandon Gill

Volume 2 Number 4 4 SEPTEMBER 2017

DONALD BERNDT, RICARDO LASA, JAMES MCCART

SITEWIT CORPORATION: SQL OR NOSQL? THAT IS THE
QUESTION!1

Is the time right? The time is right! And here is why…

Ricardo Lasa, CEO and co-founder of SiteWit Corporation, was always chastising his technical team that
the “biggest risk facing the company is the engine.” SiteWit provided cross-platform services aimed at
helping small (or even medium-sized) business customers effectively advertise on search engines like
Google (AdWords) and Bing (adCenter), as well as other online social networking or display advertising
venues. Essentially, SiteWit was a web analytics company that tracks all the detailed organic and paid
advertising traffic on client websites. SiteWit used this very detailed data to deliver software-as-a-service
(SaaS) products that handled a variety of tasks from automated keyword bidding to campaign
optimization. These products relied on a foundation of website analytic data warehousing and automated
data mining, so data quality was of paramount concern.

Lasa and his team faced a critical technology challenge in scaling the core database systems to meet
rapidly escalating data volumes. Should he stick with well-known relational database technologies? His
core team was well versed in the Microsoft technology stack and had worked together for more than a
decade on software-as-a-service (SaaS) applications. Or should he re-implement core components in
newer, highly distributed NoSQL databases in search of competitive advantages? So, the decision could
be summarized as follows: SQL or NoSQL? That was the question which had four possible solutions:

1. Do nothing. SiteWit Corporation was a lean startup with limited resources. Did we really need to
add new technologies and more uncertainty at this stage?

2. Proceed cautiously with NoSQL technology through limited experiments. It might be
reasonable to pick some component that could be implemented using NoSQL technology to gain
experience and validate the technology.

3. Develop a new product, alone or through a partnership, that makes use of NoSQL
technologies. A couple of potential SiteWit partners were experimenting with or even already
resting firmly on NoSQL technologies, so one strategy might be to learn through collaboration.

4. Take a leap of faith. Again, SiteWit was an early stage company facing plenty of risk factors.
Adding a few more for an important competitive advantage may be a reasonable tradeoff.

1 Copyright © 2017, Muma Case Review. This case was prepared for the purpose of class discussion, and not to
illustrate the effective or ineffective handling of an administrative situation. Names and some information have been
disguised. This case is published under a Creative Commons BY-NC license. Permission is granted to copy and
distribute this case for non-commercial purposes, in both printed and electronic formats.

 BERNDT, LASA, MCCART

2 Volume 2, Number 4, 2017

Whatever decision he reached, scaling the core database technology was an immediate need. New
customers were arriving daily in response to online advertising campaigns. It would not get any easier.

Database Technologies
The heart of SiteWit’s technological challenge revolved around the core technologies for managing its
data. A database is an application that manages structured collections of data. Databases could be used
either independently, or in conjunction with other programmed applications. Since the 1980s, databases
had been dominated by a particular approach: the relational database. SiteWit was already up and running
with a robust relational architecture using cloud-based infrastructure services. While relational database
vendors had added many features to support very large databases, they struggled to achieve the type of
scale and performance required by web applications. Companies like Google and Amazon had therefore
developed whole new infrastructures to support their businesses. More importantly, some other web
analytic startups had embraced next-generation distributed database technologies that grew out of earlier
efforts by Google and other “big data” pioneers. To better understand the situation, it is useful to examine
how technology has evolved.

Early Database Approaches
Databases first began to appear in the late 1950s and early 1960s, spurred by two technological factors:
the increasing reliability of computer processors and the expansion of secondary storage capacity in the
form of tapes and disk drives. Early “databases” tended to be sequential or random access files that could
be searched or processed by any program that knew the precise internal file structure. Eventually,
standalone products that were application-independent evolved. Often these used a hierarchical data
organization, with data being stored in a category, subcategory, sub-sub-category, etc. arrangement that,
from a logical standpoint, looked like a tree. IBM’s IMS system used this organization and, even more
recently, the approach was used for some systems, such as the MS Windows Registry.

Many applications, such as the early airline reservation system, delivered high performance on hardware
that would be considered primitive by today’s standards using these early database designs. Deploying
these designs, however, demanded significant concessions with respect to flexibility. Essentially, you had
to know all the intended uses of your data before designing the data organization. If a different type of
search or transaction was later desired, it was likely to prove highly inefficient, or even impossible, to
implement on an existing database. These early database models also required substantial skills from their
users. They required each query to be written like a computer program. The languages used to form these
queries were procedural languages, meaning that the details of how to produce the answer had to be
specified in an unambiguous computer algorithm. While good database performance could be achieved,
the effort involved was significant and demanded a highly skilled work force. These factors all drove
demand for a more adaptable approach to data management.

Relational Databases: A Classic Success Story
E. J. Codd first proposed relational databases and the underlying theories in a 1970 paper (Codd, 1970).
In a subsequent Turing Award lecture titled “Relational Database: A Practical Foundation for
Productivity,” he highlighted the overall objective: to improve the productivity of database programmers
(Codd, 1982). The relational database model was a radical departure that rested upon a few powerful set-
theoretic operations that combined separate data tables (or relations) to produce an answer set. The
queries were specified using relational algebra or more commonly the standards-based Structured Query
Language (SQL). SQL allowed a database user to express his or her query in a declarative form, without
any detailed programmatic instructions. That is, the form of the results and inputs were specified, without
any concern for how the results would be computed. So, database users no longer needed to be skilled
programmers or spend their time writing complicated query code—hence the gain in productivity.

 MUMA CASE REVIEW

 3

The problem with early relational databases was that, while technically elegant, they were horribly
inefficient. Queries would simply take a long time to produce answers. This lackluster performance
encouraged a widespread research effort on database optimization techniques that exploit heuristic rules,
indexing structures, and statistics to create more efficient query execution plans. These advanced
approaches substituted computer-based analysis for handcrafted query design in order to generate the
procedural steps necessary to efficiently answer queries. Over time, these research efforts were quite
successful, leading to a classic laboratory to marketplace transfer of technology, with companies such as
Oracle, IBM, and later Microsoft offering robust relational database products.

In 2012, over thirty years after their commercial introduction, relational database systems (SQL
technologies) remained at the core of virtually all corporate data infrastructures and powered most day-to-
day operational processes, from accounting systems to contact management on cell phones to
comprehensive ERP systems. There was some indication, however, that this situation might be ripe for
change. In the emerging era of “big data” with the increasingly important role of data analytics, traditional
RDMS approaches were again being performance challenged by the problems of scaling and distributed
transaction processing. In these areas, alternative database (NoSQL) technologies offered some
interesting advantages.

Scaling Database Systems
There were two fundamental approaches to scaling database systems: vertical scaling and horizontal
scaling (Prichett, 2008). Vertical scaling was the more straightforward strategy, relying on increasingly
powerful computing infrastructures to meet demand. Of course, this strategy could become expensive as
progressively more exotic machines locked you into pricey vendors. This path may also take you into
database server clustering, with an extra layer of software complexity allowing multiple machines to
focus on a single database.

Horizontal scaling took a different approach, partitioning the data across multiple databases. While this
approach was more complex, there were gains in flexibility and the potential to scale for big data
applications. Horizontal scaling could be achieved along two dimensions. One dimension involved
grouping the data by function and then spreading the functions across multiple databases. The second
dimension involved splitting the data within a function across multiple databases (or shards). NoSQL
platforms often offered built-in support for database sharding as a scaling strategy.

Distributed Transaction Processing
The dominant commercial relational database engines all provided sophisticated transaction processing
capabilities. A transaction was a user-defined unit of work that typically comprised multiple database
operations, such as individual queries or update statements. For instance, a simple human resource
function may entail reading from several database tables and writing new information to other tables as
necessary, all of which should be considered a single transaction. Distributed databases added another
layer of complexity to this process, as the required updates may involve multiple computers at different
locations. For many years, transaction processing had been driven by the so-called ACID properties. A
new philosophy, known by the acronym BASE, was now emerging, most widely supported on NoSQL
platforms.

 BERNDT, LASA, MCCART

4 Volume 2, Number 4, 2017

ACID Properties
Relational databases provided important transaction processing guarantees, including atomicity,
consistency, isolation, and durability (the so-called ACID properties). These fundamental ACID
properties could be briefly defined as follows:

 Atomicity: All of the statements within a transaction were completed (or none were performed);
no partially executed transactions.

 Consistency: The database was left in a consistent state after a transaction was executed.
 Isolation: A transaction was executed as if it was the only unit of work being processed by the

database.
 Durability: Once completed (or committed), a transaction would never be reversed.

While industrial quality relational database systems often provided additional functions to speed up
transaction processing, there were architectural limits on the degree of parallelism possible. Therefore,
very large Internet-scale applications have sought out other big data solutions.

In order to scale traditional relational databases, a few additional servers could be “clustered” to function
as a single database engine, with protocols to keep the independent memory areas synchronized (the
cache coherency problem). However, to scale beyond these special-purpose clustered solutions required a
truly distributed collection of database engines, with data spread across all the systems. What happens if
we tried to process a transaction across database boundaries? In this case, a higher-level protocol must be
used to make sure the pieces of a transaction were handled appropriately within each database, still
guaranteeing the ACID properties above. For instance, most relational databases made use of an approach
called the two-phase commit (2PC) protocol, even though it had some issues with regard to failures of
participating distributed databases. The two phases consisted of a voting phase in which all participants
must indicate (to the query coordinator) that the assigned portion of a transaction could be completed,
followed by a commit phase in which the query coordinator issued a commit or abort (depending on the
previous votes). All participants must send a “yes” vote for a transaction to reach a commit point. Of
course, this ensured consistency after each transaction, though at the cost of a fairly expensive protocol
that required the ACID properties to be met. How could we tradeoff consistency to gain availability and
enhanced performance in big data environments?

Basic Availability Soft-State Eventual Consistency (BASE)
An alternative to the traditional ACID properties was captured by the acronym BASE, for basic
availability soft-state eventual consistency. Rather than stark opposites, these different models of
transaction processing anchor a continuum. Software architects could choose points along this continuum
that best suited systems and associated business models. A BASE approach removed the strict focus on
consistency after every detailed transaction in favor of achieving “eventual consistency” within a
reasonable timeframe. In other words, approximations were fine and need not be based on every single
data item.

Think of accounting systems, which keep track of transactions as a business runs, but lag reality until the
books were formally “closed” and reconciled for a given period. During much of the time, these
accounting systems were used to producing management reports that were reasonable approximations
rather than completed financial reports.

Emerging Developments in NoSQL
Just as RDMS technology emerged out of a mix of theory and practice, NoSQL approaches were rapidly
evolving from the same two influences. On the theory side, the CAP theorem was making clear the
tradeoffs that needed to be made when distributed “big data” was involved. On the practice side,

 MUMA CASE REVIEW

 5

companies, such as Google, were applying NoSQL approaches to great effect and tools for constructing
NoSQL databases, such as MongoDB, were being applied for commercial purposes.

CAP Theorem
Eric Brewer at the 2000 Symposium on Principles of Distributed Computing (PODC) first proposed the
CAP theorem as a conjecture. There have been many different discussions of his conjecture from both
academic and practitioner perspectives, especially as it relates to NoSQL databases. These discussions
almost always began with a re-cap of CAP, highlighting three desirable properties of distributed systems:
consistency, availability, and tolerance of network partitions (hence CAP). The conjecture was that
distributed systems could embrace only two of the three properties, yielding three combinations that
described the underlying tradeoffs: consistent and available (CA), consistent and partition tolerant (CP),
and available and partition tolerant (AP) as in Exhibit 1. Two MIT researchers, Lynch and Gilbert,
published a proof of the conjecture establishing it as a theorem, though in a somewhat restricted form (
Gilbert & Lynch, 2002). It turns out, however, that the design tradeoffs pursued in many NoSQL
databases were somewhat subtler than a straightforward choice between consistency and availability.

Taking a somewhat simple perspective of these highly complex discussions, scaling based on any type of
distributed system involved partitioning the data across machine boundaries, and therefore required
partition tolerance (P). Thus, highly scalable systems were typically trading off consistency or
availability, giving us the CP or AP categories shown in Exhibit 1 (with some associated NoSQL systems
listed). The consistent-available (CA) systems included the traditional relational database management
systems (RDMSs), such as offerings from companies like Oracle and Microsoft (e.g., the SQL Server
engine being used by SiteWit).

Google’s BigTable
Google’s BigTable provided an early and excellent example of these new highly distributed database
systems (Chang et al., 2006). Because of its immense scale and innovative philosophy, Google
traditionally relied on custom-built infrastructure, including innovative data centers, inexpensive servers,
and big data toolkits. BigTable was among the first generation of “Internet-scale” highly distributed
database systems. BigTable provided a simple data model for storing structured data across a large
collection of commodity servers, thereby providing an efficient and cost effective data store at web scale.
By 2006, BigTable was the data store for many recognizable Google projects, such as Google Analytics,
Google Finance, Orkut, Writely, and Google Earth. As described by several of the developers, “BigTable
has achieved several goals: wide applicability, scalability, high performance, and high availability”
(Chang et al., 2006). What was not to like? In fact, BigTable had been directly re-incarnated in projects
such as Apache Cassandra (cassandra.apache.org). These enabled many start-up companies to make use
of big data on a solid foundation. For example: Netflix, Twitter, Constant Contact, Digg, and CloudKick
were all Cassandra users.

BigTable employed a simple data model and deliberately avoided providing complicated features such as
general transaction management. Again echoing the developers, “The most important lesson we learned is
the value of simple designs” (Chang et al., 2006). BigTable did not implement a full relational database
model, but went beyond bare key-value pairs to provide a data store based on row keys, column keys (and
column families), with timestamps to support versioning. Client applications interacted directly with
BigTable via a lean application programming interface (API), while BigTable itself relied on other
building blocks such as the Google File System (Ghemawat et al., 2003). BigTable partitioned a table into
ranges of rows or “tablets,” which were the fundamental units for distributing data. BigTable then relied

http://cassandra.apache.org/

 BERNDT, LASA, MCCART

6 Volume 2, Number 4, 2017

on a single master server and many tablet servers (perhaps thousands) to distribute and manipulate very
large tables, with the bulk of all communications going directly through the bank of tablet servers. The
early performance benchmarks were impressive, but the cost and sophistication required to create
BigTable and the other building blocks necessary for the first wave of web scale data all but eliminated
small business entrants. Fortunately, the next wave of big data entrepreneurs had access to open source
and commercial implementations of BigTable-like toolkits!

NoSQL Tools and MongoDB
By 2012, database systems that targeted big data applications were appearing at a rapid rate. Most of
these involved spreading both data and processing across many machines, so that much larger amounts of
computing power could be effectively harnessed. Nevertheless, bringing together large numbers of
distributed machines for highly targeted tasks still involved challenges in communication, coordination,
and even fault tolerance (Gelernter & Carriero, 1992). Intermediate results often needed to be
communicated between machines, certain processing steps could be dependent on each other (requiring a
specific sequencing), and any machine might fail at the worst moment. All these challenges were made
more difficult in the context of running non-stop (24-by-7) big data applications.

MongoDB (the “mongo” derives from “humongous”) was an example of an open source database that
was specifically designed to handle big data. Its first release was in 2009 and its “production-ready”
version first appeared in 2011. Already, however, it boasted a number of well-known users, including
MTV, Craigslist and FourSquare.

Elliot Horowitz, the CTO of 10gen—the original developer of the product—described the philosophy
behind MongoDB design on the mongodb.com website (Horowitz, 2010):

MongoDB wasn’t designed in a lab. We built MongoDB from our own experiences building large
scale, high availability, robust systems. We didn’t start from scratch, we really tried to figure out
what was broken, and tackle that. So, the way I think about MongoDB is that if you take MySQL,
and change the data model from relational to document based, you get a lot of great features:
embedded docs for speed, manageability, agile development with schema-less databases, easier
horizontal scalability because joins aren’t as important. There are lots of things that work great in
relational databases: indexes, dynamic queries and updates to name a few, and we haven’t
changed much there. For example, the way you design your indexes in MongoDB should be
exactly the way you do it in MySQL or Oracle, you just have the option of indexing an embedded
field.

The product was developed using a document model. Whereas atomicity, breaking data elements into
atoms that could not be further decomposed, was central to the relational model (related to the “A” in the
previously described ACID properties), MongoDB was built around a document model. A document, in
turn, could be atomic, but was much more likely to be a collection of atoms such as an array or list. It
could also be a complex object, such as a data type defined as a class. Doing this dramatically reduced the
amount of communication and processing that was required for joining tables in the relational model.
These savings proved to be particularly critical when tables and databases were distributed across servers.
Exhibit 2 illustrates the use of shards to break databases across multiple systems.

The MongoDB website identified the key advantages of the product as the following:

• Document-oriented
o Documents (objects) map nicely to programming language data types
o Embedded documents and arrays reduce need for joins
o Dynamically-typed (schemaless) for easy schema evolution
o No joins and no multi-document transactions for high performance and easy scalability

 MUMA CASE REVIEW

 7

• High performance
o No joins and embedding makes reads and writes faster

o Indexes including indexing of keys from embedded documents and arrays
o Optional streaming writes (no acknowledgements)

• High availability
o Replicated servers with automatic master failover

• Easy scalability
o Automatic sharding (auto-partitioning of data across servers)
o Reads and writes are distributed over shards
o No joins or multi-document transactions make distributed queries easy and fast
o Eventually-consistent reads can be distributed over replicated servers

• Rich query language

Web Analytics
Ricardo Lasa’s company, SiteWit, was a participant in the broader marketplace known as web analytics.
As companies became more and more dependent upon the web for communications and customer
support, the need to understand what customers were looking at and, even more importantly, what website
characteristics influenced customer decisions became critical. Web analytics, broadly defined, studied
web traffic in an attempt to understand website effectiveness.

According to a 2011 report by the Gartner Group, the web analytics marketplace could be divided into
three broad segments, only one of which seemed likely to offer much revenue generation potential
(Gassman, 2011):

• Low end, where basic traffic was measured, but little sophisticated analysis was performed. The
free standard version of Google Analytics, and various open source tools served the needs of this
market segment.

• Middle, where companies have attempted to interpret basic measures in terms of their business
value. Typically, free tools were used to gather these metrics. In some cases, however,
organizations in this category acquired additional applications, or may move to the high-end tier
once such value has been demonstrated.

• High end, where businesses made a systematic study of website value and were willing to invest
in such value once it could be measured. Gassman provides examples that include:

o Automated processes to optimize online campaigns and behavior on the website.

o Ability to target landing page content to suit the context of visitors and to customize
content to visitors' behavior throughout their visits.

o Ability to mash web analytics data with other data, including transaction, master
customer and third-party data and social media metrics.

According to the Gartner study, four companies dominated the high-end customer segment. These
companies were:

1. Adobe: Reporting about 6,000 customers accounting for almost $500 million in revenue. The
company had, through internal development and acquisition, acquired a full suite of products
including tools for social analytics, one of the most rapidly growing areas of interest.

 BERNDT, LASA, MCCART

8 Volume 2, Number 4, 2017

2. Google: By far the largest competitor, with a reported installed base of over 200,000 customers--

most of whom used the free standard version of Google Analytics. In 2011 it introduced a
premium service with vastly expanded capabilities. According to Gassman, a subscription to the
premium service typically cost $150,000/year.

3. IBM: Entered the web analytics market in 2010 by acquiring two mid-size players with a

combined customer base estimated to be somewhere around 3,000 clients.

4. Webtrends: A private company reported to have around 3,500 customers. It was also growing
through acquisition of smaller companies.

All told, it seemed likely that the existing global web analytics market was well in excess of $1 billion. It
was also evident that all four of the largest participants were growing through aggressive acquisition of
much smaller firms.

SiteWit
SiteWit, headquartered in Tampa, Florida, was on the leading edge of the market for online predictive
analytics and paid search optimization software. It provided an online marketing optimization and
predictive analytics platform that allowed online marketers to optimize their Google AdWords and Bing
adCenter campaigns, with Facebook soon to follow. Pay-per-click campaign management was available
within the SiteWit.com software-as-a-service (SaaS) platform, along with predictive analytics that
segmented and scored website traffic. The company offered a “freemium” model, with all website
monitoring, traffic reports, and predictive analytics available at no cost. Website traffic monitoring relied
on a comprehensive revenue attribution model that used first click, last click, and multi-click attribution
to better understand how multiple visitor sessions affected purchasing and other e-commerce actions.
Active campaign management was offered at a flat fee, rather than using the traditional advertising model
that based charges on a percentage of ad spend. Excerpts on online advertising campaigns from the
SiteWit website are included in Exhibit 3.

Management Team
SiteWit was established in 2009 as a result of conversations between Ricardo Lasa and Donald Berndt,
who became the company’s founders. By the time of the case, the company’s management team had
grown to seven employees, some of whom were part time.

Ricardo Lasa
Ricardo Lasa, SiteWit’s CEO, was originally from Madrid, Spain. He grew up around businesses as his
father Jose Luis Lasa built a large and successful real estate development firm. Lasa came to the United
States to finish his undergraduate degree in MIS at the University of South Florida (USF), and went on to
complete both a Master’s degree in MIS and a MBA. He stayed active in the technical community,
serving on the advisory board of the Information Systems Department at USF, as well as in organizations
such as the Tampa Bay Technology Forum (tbtf.org) and Tampa Bay WaVE (tampabaywave.org). He has
been the CEO and founder of several other technology startups including Web Piston, a do-it-yourself
website builder and Rivergy, Inc., a leading web developer in the Tampa Bay area (Gill & Lasa, 2010).
Ricardo Lasa gained critical experience in understanding the software-as-a-service (SaaS) business model
through Web Piston, selling thousands of websites via online sales. Web Piston relied heavily on online
advertising, running campaigns around the world. It was this experience that led him to co-found SiteWit
Corporation, using the early version of the service to optimize his own Web Piston campaigns. Ricardo
Lasa was a CEO with a lot of technical depth and he helped develop many of the core SiteWit

http://www.sitewit.com/
http://www.tbtf.org/
http://tampabaywave.org/

 MUMA CASE REVIEW

 9

components along with a small group of programmers that have worked together for a long time (building
both Rivergy and Web Piston).

Donald Berndt
Donald Berndt, SiteWit’s Chief Scientist, was an Associate Professor at the University of South Florida in
addition to working at SiteWit, where his research focused on data mining, business intelligence,
bioterrorism surveillance, and healthcare data warehousing and management. His academic credentials
included a doctorate from the Stern School of Business at New York University, a MS from SUNY Stony
Brook, and a BS from the University of Rhode Island. Prior to joining USF, he was an instructor and
lecturer at SUNY Stony Brook and New York University. He was also a research programmer for Yale
University.

Berndt co-founded SiteWit as a result of conversations he had with Lasa while sitting on the advisory
board of WebPiston, another company founded by Lasa. Additional information on Lasa, Berndt and the
remainder of the SiteWit management team taken from the SiteWit website is presented in Exhibit 4.

The System Architecture
SiteWit was designed and developed for cloud computing from the outset. The company ran on Amazon
Web Services (AWS), although other vendors had also been used during development. Cloud computing
offered a flexible and cost effective infrastructure for the data intensive web analytic tasks that
underpinned SiteWit’s functionality. The high-level architecture, as shown in Exhibit 5, was specifically
designed with high availability and scalability in mind.

Availability
The cloud computing environment offered some significant advantages with respect to cost and on-
demand resources, but the virtualized servers also brought challenges related to somewhat unpredictable
I/O latencies and discrete failures. To meet availability goals, SiteWit layered more traditional database
recovery and availability strategies on top of the cloud-based components. In particular, the core
relational database servers were mirrored with failover capabilities. These databases were also used to
refresh the development environment with real data. Finally, the lowest level web log data was
continually archived to a separate database instance. All other services were provided using easily
replicated commodity servers for redundancy and performance gains through coarse-grained parallelism.
The cloud computing infrastructure made it very easy to provision new servers to meet demands.

Scalability
Given the data intensive nature of the SiteWit feature set, one of the most important aspects of the
architecture was scalability. Careful consideration was given to the location of computationally
demanding tasks, leaving some within the core database servers and locating others on commodity
application servers. SiteWit used several groups of such servers for data collection, session processing (on
application servers), and reporting. Dedicated web servers that recorded the low-level page hit data
handled data collection. Most importantly, the very intensive processes used to group sessions into
threads for visitor histories, compute the many session attributes for predictive modeling, and handle cost
and revenue attribution all took place on a collection of dedicated application servers that could easily be
expanded to meet escalating demands. SiteWit maintained three attribution models: first click, last click,
and multi-click (even across funnel) attribution. An extensive process status and queuing system was used
to distribute tasks across this server group.

 BERNDT, LASA, MCCART

10 Volume 2, Number 4, 2017

Another demanding task was creating the aggregated summary data used for reporting. Again, a
collection of reporting servers could be used, incrementally pulling low-level data and producing the
various aggregations necessary for presentation via SiteWit web servers. The core database servers
coordinated the activities of these satellite server groups and handled specialized tasks such as training
predictive models for visitor scoring and segmentation.

NoSQL at SiteWit
Motivated by the growing challenge of handling huge flows of analytical data with its existing RDBMS
architecture, the technical team at SiteWit had already looked at some alternative NoSQL databases, even
running some preliminary tests. They had already started using MongoDB in a limited way, to serve
documents within its overall architecture for test purposes. In addition, two corporate partners had gained
some experience with specific systems. One partner had already made the leap, building their system
using Citrusleaf (a NoSQL platform). Their products had extremely high performance demands and their
experience was very positive. The other partner had completed some experiments with NoSQL systems,
such as MongoDB. In fact, SiteWit engineers had joined their staff at a recent MongoDB conference.

Chris Lord, CTO and Matt Munday, Chief Software Architect (CSA) both attended the MongoDB
conference and were evaluating other NoSQL technologies as well. While there was a lot of positive hype
surrounding many of the platforms, all available technologies made tradeoffs and had significant
limitations. Matt Munday (always the skeptic) had done some digging around looking for outside
opinions on NoSQL databases and MongoDB in particular. In early 2012, he posted a fairly in-depth
review on the internal network (excerpted in Exhibit 6).

The Decision
Lasa knew his company was approaching a waypoint that would require a course correction. Things were
going well. The company had already passed many critical points that could sink a startup. The core team
had developed a complex product, which was already selling in the marketplace. Along the way, a beta
version had allowed his company to raise money from angel investors and then from a small Series A
funding round. With money in the bank and several products in the market, the company was adding a bit
more development depth and focusing on growing the sales team. So, why was he again facing more
sleepless nights?

The Challenge
The challenge was coming from a critical technical issue: scaling. At the core, SiteWit was an analytics
company. A very large amount of detailed web analytics data was collected and processed as part of
delivering online advertising services, such as keyword bidding, campaign optimization, and predictive
analytics for re-marketing. The prospect of adding many more clients meant facing dramatic growth in the
sheer volume of data being processed. While they had already faced several milestones and had re-
engineered key processes to meet performance goals, explosive growth would certainly bring new
challenges. Chief among these challenges would be to scale the core database technologies. So, to
continue the nautical theme, Lasa and his technical team were facing the need to choose a course. One
course involved sticking with well-known relational database technologies with some tacks (in steady
winds) along the way to adjust to growing demands. His core team was well versed in the Microsoft
technology stack and had worked together for more than a decade on software-as-a-service (SaaS)
applications. The other course was akin to a jibe in heavy winds, a high-risk and dramatic change in
direction that involved re-implementing core components in newer, highly distributed NoSQL databases.
So, the decision could be summarized as follows: SQL or NoSQL? That was the question!

 MUMA CASE REVIEW

 11

The decision would affect every product and service offered by the company—since every one of them
ultimately derived from the company’s ability to capture every click on a website and, subsequently, to
process that information at various levels of abstraction which also needed to be stored. If SiteWit’s
ability to manage this data was degraded, it would lose its effectiveness in its key sources of customer
value: automatically adjusting bids for search terms, developing suggestions for optimizing advertising
campaigns, and creating predictive models for scoring or segmenting website visitors. Lasa often
repeated, especially within earshot of the technical staff, that the “biggest risk facing the company is the
engine.” He had little doubt that the biggest risks in failing to deliver quality services, as well as scaling
for future growth, were related to the core data collection and processing infrastructure. Among these
risks, a few specific threats stood out:

1. The key to providing high quality campaign optimization services and predictive models was
having the fine-grained data necessary for analysis. Whenever the data collection and processing
systems failed, most other services also needed to be paused (directly affecting the customer
experience).

2. Even when the processing services were running, most of the customer experience was driven by
the availability of insightful reports that were challenging to compute. Slowdowns in the data
infrastructure meant delays in delivering reports and a poor customer experience.

3. An important competitive advantage for SiteWit was the highly-automated implementation of

even complex tasks, such as predictive modeling. This enabled the delivery of sophisticated
services at very affordable prices. Any issues that needed to be resolved by highly (or even
moderately) skilled labor cut deeply into profits.

4. The key to long-term success for SiteWit was a very large customer base with low prices and low
costs. That meant that the core data intensive tasks needed to grow much larger in scale. Internet
giants, including Google, Amazon, or Facebook, had already made the transition to big data.
There was no other way that they could achieve acceptable performance.

In the back of his mind, Lasa also knew that the nature of his competition was changing. Thus far, he had
succeeded by maintaining a technological edge. If he lost that edge, how could he make a business case
for SiteWit against giants such as Adobe, Google and IBM?

The Choices
So, with these factors in mind, Lasa and his team faced an interesting set of choices. Broadly speaking
these fell into three categories:

1. Do nothing. SiteWit Corporation was a lean startup with limited resources. As a startup, simply
surviving the initial growth stage and establishing product-market fit with early adopters had been
a challenge. Do they really need to add new technologies and more uncertainty at this stage?
Perhaps the most prudent course was to focus on refining the products and gaining valuable early
customers before worrying about scaling. Did it make sense to “bet the business” with a largely
unknown and, to a great extent, unproven technology? After all, SiteWit did not have the
resources of a Google to spend whatever it might take to make its solution work when difficulties
were encountered.

 BERNDT, LASA, MCCART

12 Volume 2, Number 4, 2017

2. Proceed cautiously with NoSQL technology through limited experiments. Even though
SiteWit was an early stage company, it boasted a culture of research since its products rested on a
foundation of big data, analytics, and machine learning. In addition, a data-driven approach was
taken in the development process as part of the lean startup philosophy, including “innovation
accounting” and the learning cycle (Ries, 2011). It might be reasonable to pick some component
that could be implemented using NoSQL technology to gain experience and validate the
technology (and better understand the specific benefits within the SiteWit context). In fact, it
might also be possible to build a parallel implementation of a component that would enable a very
realistic benchmarking comparison. While this seemed like a prudent approach, the web analytics
market was changing so rapidly that prudence could easily mean being left behind.

3. Develop a new product, alone or through a partnership, that made use of NoSQL
technologies. A couple of potential SiteWit partners were experimenting with—or even already
resting firmly on—NoSQL technologies. In some cases, the technology was a bit different than
what would be used within SiteWit. Nevertheless, the technologies were certainly close enough to
shed light on potential benefits. One strategy might be to identify a partnership opportunity that
would make use of a NoSQL database, learning both from the partner and the experience of
developing a real system (with shared value). This option would certainly proceed faster than the
second option, but would also involve some loss of control.

4. Take a leap of faith. Again, SiteWit was an early stage company facing plenty of risk factors.
Adding a few more for an important competitive advantage could be a reasonable tradeoff given
the size of the market and the potential premium of being considered the industry leader. Since
development resources were limited, it would pay to hire the best engineers on the critical
NoSQL database project that was the heartbeat of all product offerings. Splitting the attention of
key technical staff would likely be a recipe for disaster, with the possibility of poorly
implementing both SQL and NoSQL databases. In addition, there were several analytics-oriented
startups that had successfully implemented NoSQL platforms and had grown quickly with the
confidence to scale. As the Nike slogan goes: Just do it!

 MUMA CASE REVIEW

 13

References
Chang, F., Dean, J., Ghemawat, S., Hsieh, W. C., Wallach, D. A., Burrows, M., Chandra, T., Fikes, A. &

Gruber, R. E. (2006). Bigtable: A distributed storage system for structured data. Seventh
Symposium on Operating System Design and Implementation (OSDI).

Codd, E. F. (1970). A relational model of data for large shared data banks. Communications of the ACM,
13(6): 377–387. doi: 10.1145/362384.362685

Codd, E. F. (1982). Relational database: a practical foundation for productivity. Communications of the
ACM, 25(2), 109-117. doi: 10.1145/358396.358400

Gassman, B. (2011). Web analytics market update, 2012. The Gartner Group, 501, Retrieved from
https://www.gartner.com/doc/1851414/web-analytics-market-update-

Gelernter, D., & Carriero, N. (1992). Coordination languages and their significance. Communications of
the ACM, 35(2): 97–107. doi: 10.1145/129630.129635

Ghemawat, S., Gobioff, H., & Leung, S., (2003, October). The Google file system. ACM Symposium on
Operating Systems Principles (SOSP).

Gilbert, S., & Lynch, N. (2002). Brewer's conjecture and the feasibility of consistent, available, partition-
tolerant web services. ACM SIGACT News, 33(2), 51-59.

Gill, T. G., & Lasa, R. (2010). Web Piston: Choosing a new strategy. ICIS 2010 Proceedings, 132.
Retrieved from http://aisel.aisnet.org/icis2010_submissions/132

Horowitz, E. (2010). State of MongoDB March, 2010. Retrieved from
https://www.mongodb.com/blog/post/state-of-mongodb-march-2010

Hurst, N. (2010). Visual guide to NoSQL systems. Retrieved from http://blog.nahurst.com/visual-guide-to-
nosql-systems

Pritchett, D. (2008). Base: An acid alternative. Queue, 6(3), 48-55.

Ries, E. (2011). The lean start up. New York: Crown Publishing Group, Random House, Inc.

http://dx.doi.org/10.1145%2F362384.362685
https://www.gartner.com/doc/1851414/web-analytics-market-update-
http://dx.doi.org/10.1145/129630.129635
http://aisel.aisnet.org/icis2010_submissions/132
https://www.mongodb.com/blog/post/state-of-mongodb-march-2010
http://blog.nahurst.com/visual-guide-to-nosql-systems
http://blog.nahurst.com/visual-guide-to-nosql-systems

 BERNDT, LASA, MCCART

14 Volume 2, Number 4, 2017

Biographies
Don Berndt is an Associate Professor in the Information Systems and Decision
Sciences Department at the University of South Florida’s Muma College of
Business. He received his Ph.D. in Information Systems from the Stern School of
Business at New York University, as well as a M.S. in Computer Science from
the State University of New York at Stony Brook. Dr. Berndt’s research and
teaching focus on the intersection of artificial intelligence and database systems,
including machine learning and text mining. He is currently working on a
federally funded project investigating computational approaches for modeling

financial systemic risk. He also co-founded SiteWit.com and serves as Chief Scientist.

Ricardo Lasa is co-founder and CEO of SiteWit.com. Prior to co-founding
SiteWit, Ricardo started Web Piston, one of the leading website building
platforms for small businesses to market their products and services. He holds a
M.B.A. with an emphasis in Entrepreneurship, Marketing, and International
Management, as well as a M.S. in Management Information Systems from the
Muma College of Business at the University of South Florida. Ricardo is highly
involved in the Tampa Bay technology and business community, serving as a
board member of the Tampa Bay Technology Forum. He is also a long-standing

board member of Filasa, a real estate development firm headquartered in Madrid, Spain.

James McCart is Vice President of Research & Development at SiteWit and
serves as an adjunct faculty member at the Muma College of Business and the
Morsani College of Medicine at the University of South Florida (USF). He
received his Ph.D. and M.S. in Management Information Systems from USF
and holds a B.S. in Information Systems from Purdue University. His principal
research areas include healthcare informatics and computational approaches to
systemic risk in the financial sector.

 MUMA CASE REVIEW

 15

Exhibit 1: Visual Guide to NoSQL Systems

Source: Hurst, N. (2010). Visual guide to NoSQL systems. Retrieved from http://blog.nahurst.com/visual-
guide-to-nosql-systems

http://blog.nahurst.com/visual-guide-to-nosql-systems
http://blog.nahurst.com/visual-guide-to-nosql-systems

 BERNDT, LASA, MCCART

16 Volume 2, Number 4, 2017

Exhibit 2: A Distributed Set of MongoDB Servers or Shards

Source: https://www.mongodb.com/

https://www.mongodb.com/

 MUMA CASE REVIEW

 17

Exhibit 3: Excerpts from SiteWit Website

Source: www.sitewit.com

http://www.sitewit.com/

 BERNDT, LASA, MCCART

18 Volume 2, Number 4, 2017

Exhibit 4: SiteWit Management Team

Team Leaders

SiteWit was founded in 2009 by Ricardo Lasa and Dr. Donald Berndt with the mission of finding a way to
objectively measure the quality of internet traffic. Ricardo was at the time Chief Executive Officer of Web
Piston Website Builder and Don was sitting on Web Piston’s advisory board.

After an advisory board meeting Ricardo and Don started talking about ways to improve Web Piston’s
paid search campaigns. Don’s background in data mining and Ricardo’s domain knowledge were a
perfect match to explore how data mining could be used to purchase only the best available traffic. That
meeting was the spark that got SiteWit started.

Since then, the founders have put together a team of the best and brightest software engineers, data
mining experts, and business people to put together a next generation PPC bid management and
behavioral analytics suite.

The result is SiteWit. The core of the team has been working together for over 10 years and we greatly
enjoy working with each other, as crazy as that might seem!

Our Team

Ricardo Lasa – Co-Founder, Chief Executive Officer
Ricardo is a hard working serial entrepreneur that is highly involved in the technology and business
community in Tampa Bay. Prior to co-founding SiteWit, Ricardo started Web Piston Website Builder, now
one of the leading platforms for small businesses to build their website and market their products and
services. Through running Web Piston Ricardo realized there had to be a better way to buy paid search
and started to work on SiteWit with Don in 2006. Web Piston is a thriving company built on sound
business principles, profitable and growing even in these dire times of the “Great Recession.” Ricardo is
focusing all his efforts now in growing SiteWit and helping search engine marketing firms provide better
online marketing for their clients through a simple and cost-efficient mechanism.

Ricardo holds a Bachelor’s degree in Management Information Systems, a Master of Business
Administration with emphasis in Entrepreneurship, Marketing, and International Management, and a
Master of Science in Management Information Systems with emphasis on Database Architecture and
User Interface Design, all from the University of South Florida Business School. Ricardo also attended
the Harvard Business School Launching New Ventures program in 2009 and is looking forward to joining
the HBS Owner/President Management program in 2010. Ricardo sits on the board of directors of the
Tampa Bay Technology Forum, the advisory board of the Management Information Systems from the
University of South Florida Business School, and the board of directors of Filasa, a real estate
development firm headquartered in Madrid, Spain.

Don Berndt Ph.D. – Co-Founder, Chief Scientist
Don is a professor in the College of Business at the University of South Florida. His research interests are
centered on business intelligence technologies such as data warehousing, data mining, and text mining.
A particular emphasis of his work is the application of these technologies in healthcare, including data
and text mining for electronic medical records. More recent work has focused on information markets as
another mechanism for prediction and collective intelligence (working together with Ricardo on Agorx). He

http://www.webpiston.com/
http://www.webpiston.com/

 MUMA CASE REVIEW

 19

has published more than 75 research papers on these topics and worked with a number of
entrepreneurial technology firms, as well as other organizations throughout his career.

His first exposure to entrepreneurism was a position as a LISP programmer at Cognitive Systems, an
artificial intelligence start-up associated with Yale University. That was followed by work in scientific
computing and healthcare analytics at other companies. Working with Ricardo on SiteWit has provided an
opportunity to apply data warehousing and data mining technologies to website traffic analysis and the
development of learning algorithms for managing paid search. Don received his Ph.D. in Management
Information Systems from the Stern School of Business at New York University and M.S. in Computer
Science from Stony Brook University.

Jesse Baynard – Lead User Experience
Jesse holds a Master’s degree in Information Systems from the University of South Florida. Since
graduating in 2000, Jesse’s primary focus has been in turning complex business problems into simple
and effective technology solutions. These solutions have spanned across numerous vertical markets
including healthcare, back office management, and e-commerce. Now as a member of the SiteWit
management team, Jesse is dedicated to bringing clarity and expertise to the problem of search engine
marketing inefficiencies. Intrigued by the power of mining behavioral analytics in predicting behavior,
Jesse believes that this technology is the best automated approach for a problem that is far too
complicated for click-through or simple ROI ratios alone. In his spare time, he is involved in the Tampa
Bay area tech community, an avid photographer and parent of two children.

Matt Munday – Lead Software Developer
Matt is SiteWit’s lead developer with many years of experience in designing, building and implementing
web and backend applications for e-commerce and web development that have been tremendous
business successes. Matt is an avid programmer who spends a lot of his free time creating applications
for Google’s Android OS, designing and creating templates and plugins for WordPress and a template for
Zenphoto, and working with open source projects such as Snark. Matt has deep level expertise in Java,
C++, C#, VB.NET, PHP & TSQL.

Chris Lord – Lead Software Developer
Chris is a detail oriented software developer with extensive experience in e-commerce development.
Before working on SiteWit Chris developed a major shopping cart platform used by thousands of
business owners in several countries. He developed the billing, customer management, and customer
communication systems for Web Piston Website Builder and many customized e-commerce solutions for
businesses in vastly different markets. Chris also oversees the network and hosting infrastructure of
SiteWit and its cloud implementation. He has received certifications from both CIW and Microsoft.

Evan Bushelman – Lead Customer Advocate
Evan is responsible for building and managing relationships with our customer base. We first met Evan
during the summer of ’09 when he interned for Web Piston. He instantly left his mark, which is why he
was invited to join the SiteWit team once he graduated. Evan holds a Bachelor’s degree in Finance from
the University of South Florida. He is a Google AdWords Certified Partner and available to answer all of
your search marketing inquiries.

Andy Montoya – Customer Advocate
Andy is a graduate from the University of South Florida having acquired a Bachelor’s degree in Business
Administration with a concentration in Marketing. He was an active member of the American Marketing
Association USF Chapter and learned the essentials of building strong business relationships. Andy has

 BERNDT, LASA, MCCART

20 Volume 2, Number 4, 2017

worked in the customer service field for over five years and understands the value of effective
communication. He listens with an empathetic ear and makes sure that all customer concerns are dealt
with quickly and efficiently. Since working at SiteWit, Andy has been a problem-solver for customers and
has helped in the implementation of various marketing initiatives.

Source: http://www.sitewit.com/team-leaders/

http://www.sitewit.com/team-leaders/

 MUMA CASE REVIEW

 21

Exhibit 5: The SiteWit System Architecture

Source: Prepared by case writers

 BERNDT, LASA, MCCART

22 Volume 2, Number 4, 2017

Exhibit 6: Excerpts from Matt Munday’s Review of MongoDB

The post began by noting some key strengths of the product:
 To be fair, it must be acknowledged that MongoDB is popular, and
that there are valid reasons for its popularity.

* It is remarkably easy to get running.

* Schema-free models that map to JSON-like structures have great
appeal to developers (they fit our brains), and a developer is
almost always the individual who makes the platform decisions
when a project is in its infancy.

* Maturity and robustness, track record, tested real-world use
cases, etc, are typically more important to sysadmin types or
operations specialists, who often inherit the platform long after
the initial decisions are made.

* Its single-system, low concurrency read performance benchmarks
are impressive, and for the inexperienced evaluator, this is
often The Most Important Thing.

The post then went on to warn about some serious problems.
But if you're intending to really run a large scale system on Mongo,
one that a business might depend on, simply put:

**1. MongoDB issues writes in unsafe ways *by default* in order to win
benchmarks**

2. MongoDB can lose data in many startling ways

3. MongoDB requires a global write lock to issue any write
Under a write-heavy load, this will kill you.

4. MongoDB's sharding doesn't work that well under load

5. mongos is unreliable

7. Things were shipped that should have never been shipped

8. Replication was lackluster on busy servers

Please take this warning seriously.

Source: SiteWit internal network posting

	Database Technologies
	Early Database Approaches
	Relational Databases: A Classic Success Story
	Scaling Database Systems
	Distributed Transaction Processing
	ACID Properties
	Basic Availability Soft-State Eventual Consistency (BASE)

	Emerging Developments in NoSQL
	CAP Theorem
	Google’s BigTable
	NoSQL Tools and MongoDB

	Web Analytics
	SiteWit
	Management Team
	Ricardo Lasa
	Donald Berndt

	The System Architecture
	Availability
	Scalability

	NoSQL at SiteWit

	The Decision
	The Challenge
	The Choices

	References
	Biographies
	Exhibit 1: Visual Guide to NoSQL Systems
	Exhibit 2: A Distributed Set of MongoDB Servers or Shards
	Exhibit 3: Excerpts from SiteWit Website
	Exhibit 4: SiteWit Management Team
	Team Leaders
	Our Team

	Exhibit 5: The SiteWit System Architecture
	Exhibit 6: Excerpts from Matt Munday’s Review of MongoDB

